skip to main content


Search for: All records

Creators/Authors contains: "Seehausen, Ole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schubert, Michael (Ed.)

    A large collection of cichlids (N = 133) from Lake Victoria in Africa, with total lengths ranging from 6 to 18 cm was nondestructively imaged using micro-computed tomography. We present a method to efficiently obtain three-dimensional tomographic datasets of the oral and pharyngeal jaws and the whole skull of these fishes to accurately describe their morphology. The tomographic data we acquired (9.8 TB of projection images) yielded 1.5 TB of three-dimensional image stacks used for extracting the relevant features of interest. Herein we present our method and outlooks on analyzing the acquired data; a morphological description of the oral and pharyngeal jaws, a three-dimensional geometric morphometrics analysis of landmarked skull features, and a robust method to automatically extract otoliths from the tomographic data.

     
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  2. Abstract

    Understanding genetic connectivity plays a crucial role in species conservation decisions, and genetic connectivity is an important component of modern fisheries management. In this study, we investigated the population genetics of four endemic Lates species of Lake Tanganyika (Lates stappersii, L. microlepis, L. mariae, and L. angustifrons) using reduced-representation genomic sequencing methods. We find the four species to be strongly differentiated from one another (mean interspecific FST = 0.665), with no evidence for contemporary admixture. We also find evidence for strong genetic structure within L. mariae, with the majority of individuals from the most southern sampling site forming a genetic group that is distinct from the individuals at other sampling sites. We find evidence for much weaker structure within the other three species (L. stappersii, L. microlepis, and L. angustifrons). Our ability to detect this weak structure despite small and unbalanced sample sizes and imprecise geographic sampling locations suggests the possibility for further structure undetected in our study. We call for further research into the origins of the genetic differentiation in these four species—particularly that of L. mariae—which may be important for conservation and management of this culturally and economically important clade of fishes.

     
    more » « less
  3. Abstract Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life. 
    more » « less
  4. Abstract

    African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.

     
    more » « less
  5. Abstract

    Parasitism has been proposed as a factor in host speciation, as an agent affecting coexistence of host species in species‐rich communities and as a driver of post‐speciation diversification. Young adaptive radiations of closely related host species of varying ecological and genomic differentiation provide interesting opportunities to explore interactions between patterns of parasitism, divergence and coexistence of sympatric host species. Here, we explored patterns in ectoparasitism in a community of 16 fully sympatric cichlid species at Makobe Island in Lake Victoria, a model system of vertebrate adaptive radiation. We asked whether host niche, host abundance or host genetic differentiation explains variation in infection patterns. We found significant differences in infections, the magnitude of which was weakly correlated with the extent of genomic divergence between the host species, but more strongly with the main ecological gradient, water depth. These effects were most evident with infections ofCichlidogyrusmonogeneans, whereas the only host species with a strictly crevice‐dwelling niche,Pundamilia pundamilia, deviated from the general negative relationship between depth and parasitism. In accordance with the Janzen–Connell hypothesis, we also found that host abundance tended to be positively associated with infections in some parasite taxa. Data on thePundamiliasister species pairs from three other islands with variable degrees of habitat (crevice) specialization suggested that the lower parasite abundance ofP. pundamiliaat Makobe could result from both habitat specialization and the evolution of specific resistance. Our results support influences of host genetic differentiation and host ecology in determining infections in this diverse community of sympatric cichlid species.

     
    more » « less
  6. Abstract

    Species interactions lie at the heart of many theories of macroevolution, from adaptive radiation to the Red Queen. Although some theories describe the imprint that interactions will have over long timescales, we are still missing a comprehensive understanding of the effects of interactions on macroevolution. Current research shows strong evidence for the impact of interactions on macroevolutionary patterns of trait evolution and diversification, yet many macroevolutionary studies have only a tenuous relationship to ecological studies of interactions over shorter timescales. We review current research in this area, highlighting approaches that explicitly model species interactions and connect them to broad‐scale macroevolutionary patterns. We also suggest that progress has been made by taking an integrative interdisciplinary look at individual clades. We focus on African cichlids as a case study of how this approach can be fruitful. Overall, although the evidence for species interactions shaping macroevolution is strong, further work using integrative and model‐based approaches is needed to spur progress towards understanding the complex dynamics that structure communities over time and space.

     
    more » « less